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Introduction

We investigate a mathematical model for cell growth and division. Our main assumption is that (chronological)
age and size (by size we mean volume, length or any other quantity which is preserved at division) are the traits
required to describe the cell’s progress through its cycle properly. Age seems reasonable because some biochemical
reactions (e.g. replication of DNA) proceed sequentially during the life time of a cell, while other reactions, such as
the increase of structural materials, depend on such factors as diffusion times and surface to volume ratios, suggest-
ing the indispensability of size as a parameter. (Bell & Anderson (1967)).

There is a vast amount of literature on cell cycle models and almost as many models have been proposed as there
are papers on the subject, and the number of papers is enormous. We refer to chapter II and III of the monograph
of Eisen (1979) for an overview. In this respect our paper can be seen as the umpteenth attempt to describe some
features of proliferating cell populations. However, the main goal of this paper is to show how abstract results from
functional analysis (in particular positive operator theory) can be exploited to “solve” a concrete problem.

This paper is subdivided into nine sections. In section 1 we present the model and we make some assumptions
on the functions which describe the life of individual cells. In section 2 the problem is reduced to an integral equa-
tion (abstract renewal equation) from which the distribution of birth sizes can be calculated. Existence and unique-
ness of a solution to this integral equation is proved in section 3. Then, in section 4 the abstract renewal equation is
reduced to a family of operator equations by means of the Laplace transform. It turns out that the investigation of
the large time behaviour of the solution of the renewal equation is very closely linked with the location of some set
of singular points, in particular the position of the singular point with largest real part, the so-called dominant singu-
larity (or, in another context, eigenvalue) which can be determined by employing methods from positive operator
theory. We shall briefly discuss some results from positive operator theory in section 5, and these results are used in
section 6 to prove existence of a dominant singularity under some extra condition on the growth rate (i.e. the func-
tion describing the dynamics of an individual’s size). In section 7 we calculate the residue at this dominant singular-
ity and the outcome is used in section 8, where we apply the inverse Laplace transform which gives us the large time
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behaviour of the birth function. Finally in section 9 we explain what this means for the solution of our original
problem and why we cannot dispense with the assumptions made. In particular we will show what happens in case
of exponential (individual) growth (i.e. growth of an individual is proportional to its size), and it will appear that
these results reject a supposition of Bell (1968). -

1. The model

Here we shall confine our attention to large populations so that fluctuations from the mean can be ignored. We
assume that a cell is fully characterized by its age a and size x. Here size can mean volume, length, DNA-~content or
any other quantity which obeys a physical conservation law. Size increases with time and we assume that this process
can be described by the ordinary differential equation

£ = 500, (LD

This means in particular that the growth rate g does neither depend on age, which seems very reasonable from a bio-
logical point of view, nor on environmental factors (such as food density) which are influenced by the population

itself, causing nonlinearities in the equation. Age also increases with time and obeys %:— = 1. However our theory

can be easily extended to the case where a denotes some physiological age, which does not necessarily increase

linearly with time: % = f(a) where f is a bounded continuous positive function. We assume that if a cell divides,

it produces two daughter cells, both having age zero and half the size of the mother. Let n(7,a,x) be the cell density
function, i.e. [;*f;’n(t,a,x)dadx is the number of cells having age between a; and a,, and size between x; and x,.
From the conservation principle it follows that the equation for the density function can be written as

on _ . o
= V{ F—-D, 12)

where the flux J = J(t,a,x) is given by J = (n(t,a,x),g(x)n(t,a,x)), and V is the operator (—a——,—é—). The sinks F
gven by , °p da’ ox

and D account for the individuals which “disappear” as a result of fission and death respectively. We refer to the
forthcoming book of Metz & Diekmann (in preparation) for a more general description how to derive balance equa-
tions such as (1.2) (also see Eisen (1979)).

Let fission and death be described by the per capita probabilities per unit of time b(a,x) and p(a,x) respectively,
then F = F(t,a,x) = b(ax)n(t,a,x)and D = D(t,a,x) = pla,x)n(t,a,x).

We shall now introduce a number of mathematical assumptions on the functions g, b and g and discuss their
biological meaning and/or mathematical motivation. With respect to the growth rate g we assume

g is a continuous function on [0,c0) and there exist constants gy, &max A)

g
such that 0 < g < Zmax < 00 and gy < g2(x) < gmay for all x €[0,00).

It follows from this assumption that certain combinations of a and x are forbidden in the sense that cells with
such a combination of age and size will never come into existence. More precisely there exists a (continuous) curve
in the (a,x)-plane starting from (a,x) = (0,0) and tending towards (oo,00) below which no individual will ever
dwell. We can compute this curve explicitly. Consider a cell whose size at birth is x(x = 0) (assuming that such
cells indeed exist). Let X(a,x) be its size at age a, if it has not died or divided before reaching that age. Then X is




the solution of the initial value problem % = g(x), x(0) = x, which has a continuous (differentiable) solution

tending to oo if a tends to oo because of assumption (4,). The curve {(a,X(a,x))la = 0} is called the characteristic

curve starting from (0,x). (See figure 1) We refer to section 2 for more details. -

/

X=X(a\y) /
fo}

e
= X(a,0)
/ X b

el

Figure 1. The set . An individual with birth size x travels along the curve {X(a,x)| a =0} until it dies or divides.

Individuals can only exist in the shaded region & = {(a ,J_c)EIR+ XR¥|x = X(a,0)}. The actual state space 2, (i.e.
the subset of R* XR™ in which indeed individuals do occur) is a subset of £, and in some cases &, is smaller than
. (We refer to section 6 for more details.)

We impose the follbwing conditions on b and p:
b € L(Q) (i.e. b is measurable and essentially bounded on )
bax)=0,a < ag, (a,x) € 4, (Ab)
b(a,x)>0,a > ay (a,x) e},
lz;m_)ior:f b(a,X(@x)) = b > 0 uniformly in x.
Here ag > 0 is some threshold below which cells cannot divide. The biological reason for this is that every cell has
to go through a phase during which DNA is replicated, and the duration of this phase is more or less constant (see

Bell & Anderson (1967), Eisen (1979)). Biologically, the last condition in (4,) says that old individuals continue
dividing at a positive rate.

p € L (Q) (i.e. pis measurable and essentially bounded on compact subsets of ), (A‘u)

ma,x)=0,(ax) e Q.
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Let

d(a,x) = b(a,x) + wa,x). ‘ (1.3)
We assume

There exists a constant d ., with 0 < d, < oo such that limd(a,X(a,x)) = d
a—w

uniformly in x. Moreover, if d, < oo, there exists a constant M = 0 such that Ay

o0
for all x: [ |d(a,X(a,x)) — dy|da < M.
0

Biologically assumption (4,) means that the probability for a cell to reach age a without dying or dividing decreases
more or less exponentially if a becomes large. In section 9 it is explained why this assumption is needed.

We can rewrite (1.2) as

Ln(tax) + L nax) + 2 @GNEax) = —(@ax) + blaxIn.ax), (14)

t =0,(ax) e f

The fact that dividing mothers of age a and size 2x gii'e birth to two daughters of age a and size x ‘is accounted for
by the boundary condition

n(t,0x) = 4 _ofb(a 2x)n(t,a,2x )da. | (1.5)

ao

See Bell & Anderson (1967) or chapter I of Metz & Diekmann (in prep.) for an explanation of the factor 4.

Remark 1.1. In (1.5) we only have to integrate over those é.ges a that satisfy X(a,0) < 2x.
We specify an initial condition ’
o n0,a,x) = noa,x), @x) € L (1.6)
Biological considerations yield that ng should satisfy

nya,x) = 0,(a,x) € Q and ng € Li(). (1D

2. Reduction to an abstract renewal equation

Usually age-dependent population models are reduced to a renewal equation (which is a Volterra integral equa-
tion of convolution type) for the birth function (sec Hoppersteadt (1975)). Here we will show that this can aiso be
done for our age-size-structured model (1.4)-(1.6). In this case, however, we obtain an abstract renewal equation, in
the sense that solutions take values in some function space.

Let m(z,a,x) be defined by
m(t,a,x) = gxm(t,a,x), @D

then m satisfies the equation

*




W+ 4 gy = —(uax) + b)) 2.20)
de(x) © .
m(t,0,x) = E%x’%a{ b(a,2x)m(t,a,2x)da, o (2.2b)
def
m(Oaa ,X) - mO(arx)zg(x )nO(a X )' (2'20)

By the method of integration along characteristics (See Courant & Hilbert (1962)) we can convert this system into an
integral equation.
The characteristic curve through (¢,a,x) is determined by s — (T'(s,¢),4 (s,a),X (s ,x)), where s is an independent

book-keeping variable and T,4,X are solutions of the ODE’s % =1, TO:) =1t, % =1, A0,a) = a,
% = g(X), X(0x) = x, thus T'(s ,t) = s+, A(s,a) = s +a,and X(s,x) = G~ (s + G(x)), where
x d€
Gx)= [—=, x =0, 2.3
() 12® 2.3)

and G~! denotes the inverse function of G-G(x) can be interpreted as the time needed to grow from 0 to x. Observe
that G~ '(a) = X(a,0). :

Now let t,a,x be fixed and let m(s) = m(T(s,t),4 (s,a),X(s,x)), then

B — 44 6,X6 )76, @4)
where d(a,x) is given by (1.3). Let
def s
Q(s,a,x) = exp | — [d(A(0,a),X(0,x))do |, (2.5)
0

which can be interpreted as the probability that a cell with age a and size x reaches age a +s. From (2.4) we
obtain that

m(s) = m(0)Q(s,a,x). (2.6)
Let ’
t' =T(s,t),a’ = A(s,a), x’ = X(s,x). 2.7
6] We choose t = 0. Thena = a’—t', x = X(—t',x"). If we substitute this in (2.6) we obtain
m@a'x)=m@a -’ X(—t' Xy a’ —t' X(—t'x")),ifa" =t (2.8)
(ii) We choosea = 0. Thent = t'—a’, x = X(—a’,x’), and we deduce from (2.6)
m(ax)=m@t'—a'0X(—a' xWE@,X(—a'x))ifa’ < 1t’, 2.9)

where

def a
E(ax) = Q@a0x) = exp | — [d(o,X(0,x))do (2.10)
0




is the probability that a cell having size x at birth reaches age a.

If we drop the acéents in (2.9) and (2.10), and use (2.1) and (2.2¢) we find

n(t.ax) = Jgg‘:‘g(—%ﬂno(a—-t,X(—t,x)}Q(t,a—t,X(—t,x)), t <a, - .11
n(t,ax) = ﬂ%ﬁnn(t ~a0X(—a,x)yE@,X(—ax)), t = a 2.12)
Let the birth function B be defined by
B(t.x) = n(1,0,x). (2.13)
-If we substitute (2.11)-(2.12) into (1.5), then we obtain the following integral equatioh for B:
B(tx)=®tx) + fk(a,2x)B(t—a,X(~—a,2x))da, 2.19
where 0
B(t x) = —gi—(———ll(z x’)z" f b(a,2x)Q(t.a —t,X(—t,2x)ynola —,X (—t 2x))da, @.15)
and
k(ax) = —g—(l—’xnb(a X)E(a, X(— a,x)) (2.16)

g(x)

®(¢,x) is only defined for values of x satisfying G(2x) = ¢, and one should read ®(¢,x) = 0 if G(2x) < ¢. Furth-
ermore k(a,x) = 0ifa < aggora = G(x),and k(a,x) = 0if ag < a < G(x).

The integral equation (2.14) was also found by Bell (1968) but he only solved it for the special case that all cells
divide at the same age (see also Beyer (1970)).

It follows from (2.11)-(2.12) that knowledge of the solution B(¢,x) of (2.14) yields the solution n(t,a,x) of (1.4)-
(1.6). Therefore we shall concentrate on (2.14) during the rest of this chapter. In section 9 we shall interprete some
result in terms of the density n(t,a,x).

We can rewrite (2.14) as the abstract renewal equation
1
B@t) = ®(t) + fK(a)B(t —a)da, Q.17)
0

where, for fixed t = 0 ®(¢) € L[0,00) and K(z) defines a bounded operator from L{0,00) into itself:

(K@W)x) = k(22 (X (—1,2x)), ¢ € L,[0,00), (2.18)
where one should read (X (—1¢,2x)) = 0if G(2x) < t.

Remark 2.1. Throughout this chapter we call a Banach space-valued function integrable if it is Bochner-integrable.
This means the following: let E be a Banach space with norm ||l and let f:(a,b) - E, where
—o00 < a < b < oo. Then f(¢) is Bochner-integrable if and only if f is strongly measurable and ||f (¢)l|g is Lebes-
gue integrable (see Hille & Phillips (1957)).

F:




We call B(¢) a solution of (2.17) if and only if
i) B(t) € L[0,00),t = 0,
i) B(t) is Bochner integrable on [0,¢() for all ¢, = 0,
iii) . B(t) obeys (2.17).

3. Existence and Uniqueness of solutions

It turns out that the proof of an existence and uniqueness result for the abstract renewal equation (2.17) is rather
similar to the scalar case which has been extensively treated in the book of Bellman & Cooke (1963). First we shall
prove a lemma.

Lemma 3.1. (a) Let d, (of assumption (A;)) be finite. Then there exist positive constants Ty, mg, Mg and Mg such that
forall t = Ty @)l < Mge ™, and for aul ¢ € L [0,00): mxe ™" Yl < IK@EWI < Mge % ||yl

(b) Let d, = oo. For all ¢ > 0 there exist constants Lg(c),Lo(c) > 0 such that for all t = 0: |®()ll < Lg(c)e™,
IK@EWH < Lg(c)e ™ ll, for all ¢ € L,[0,00).

Proof. (a) E(a,x) = exp[— fa d(o,X(6,x))do] = exp[f fa {d(0,X(0,x))—d}dolexp[— fa ddo]. Let M be the con-
stant of assumption (4,), th:n ° ’

e Me™* < E(a,x) < eMe 94,
Part (a) of the lemma now follows immediately from these estimates and the assumptions (4;) and (4,). In an
analogous manner we can prove part (b). [

The following existence and uniqueness result can be proved.

Theorem 3.2. Let ty > 0. There exists a unique bounded integrable solution B(t) of (2.17) on [0,t,).

The existence result can be established by the method of successive approximations. Uniqueness then follows
from a Gronwall-type lemma. We refer to Bellman & Cooke (1963) where the scalar case has been worked out in
great detail, and the reader will have no difficulty to see that all proofs can be carried through. Because ¢, can be
chosen arbitrarily large, theorem 3.2 implies global existence of the solution B(z).

Remark 3.3. Strictly speaking condition (4, ) and (4 ) are sufficient to prove existence and uniqueness.

In the next section we shall apply Laplace transformation to the integral equation (2.17). Therefore we need the
following estimate.

Theorem 3.4. There exists a B € R such that |B(t)l| < MgeP, t = 0, where My > 0 is a constant.

o0
Proof. Let 8 € R be such that [|®(¢)ll < c,e® and je”ﬂ’ IK(@lldt = ¢, < 1. From lemma 3.1 it is clear that
, 0
such a B indeed exists. Then

&




IB@OI < eref + f IK@)IIB(t—a)llda =cieP + e j{uK(a)ne—ﬂa}{uB(t-a)ne-ﬂ« }da.

de

of ! '
Let v() = [max. |B(a)e™#4]l, then v(t) < ¢, + v(z) je-/’a IK(a)llda < ¢, + cv(t), hence v (1) <
- 0

C
which we obtain that IB()Il < ‘c e O
— €2

4. Laplace Transformation

A technique which turned out to be extremely useful in the study of scalar renewal equations is Laplace transfor-
mation (e.g. Bellman & Cooke (1963), Hoppensteadt (1975)). This technique can also be employed in the study of
abstract renewal equations such as (2.17). First we shall introduce some notations. Let I CR be an interval, and E a
Banach space We defme by L,(1,E), 1 <p < oo, the Banach space consisting of all functions f: I — E satisfying

f
IFl, = {],Hf(t)lll’dt}l’ < 00,if p < o0 and [|f |, = ess supllf ()l < o0, if p = o0. If I = [0,00) we shall write
L, (0,00;E) instead of L, ([0,00);E).

Remark 4.1. We have to diétinguish between the norm of f(¢), ¢ = 0, as an element of £ and the norm of f being
an element of L,(I;E). In the first case we write [|f (2)ll, in the second case |[f Il,-

Definition. Let / be a function from [0,00) to some Banach space E, then its Laplace transform f is defined by

0
foy = f e M f(t)dt, whenever this integral is defined with respect to the norm topology.
0

The following result is standard (Hille & Phillips (1957)).

Lemma 4.2. If f € L(0,00;E) then f(\) is analytic in Re A > 0 and continuous in Re A = 0 (with respect to the
norm-topology).

We shall state two results from Fourier theory which are generally known for the case that E is finite-
dimensional. The first is the so-called Riemann-Lebesgue lemma (Hille & Phillips (1957), thm 6.4.2).

Lemma 4.3 (Riemann-Lebesgue). Let f € L(0,00;E) and f its Laplace transform. Then Illim f (E+in) = 0, uni-
|00
- formly for & in bounded closed subintervals of (0,00).

The second result which became known as Plancherel’s theorem says that the Fourier transform of an L,-
function is again an Lo-function, and the mapping f — f defines an isometry. We refer to Yosida (1980) for a
proof in the scalar case, and the reader will have no difficulty to see that Yosida’s proof can be carried through
directly for Banach space-valued functions.

Lemma 44. Let [ € Li(—0,00;E) N Ly(—c0,00;E), then the function —>f(in) is an element of Lo(—o0,00;E)
and [P N f @Ot = [ lIf Gm)liPdn.

This last equality is called Parseval’s relation.
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Let the right-half-plane A be defined by

def
A={AeCRel> —d,} , @.n
—
(where A = C if do, = o0). Then it follows from lemma 3.1 and lemma 4.2 that K(\) and ®(\) are defined and ana-

Iytic in A. Moreover it follows from lemma 3.1 that R\ is not defined if Re A < —d.,.

Remark 4.5. It is not a priori clear whether K(A) is defined for A on the vertical line Re A = —d,,. As to ®() it
depends on the initial age - size distribution ng(a,x) whether or not it is defined for values of A satisfying
Re A < —d,,. However this is not important for our purposes.

o0
We define BQ\) = f e MB(t)dt for those values of A for which the integral converges. From theorem 3.3 we
0
conclude that B()) exists if Re A > 8. The convolution in (2.17) is converted by the Laplace transformation into a

product of Laplace transforms. We wish to extend B()) to A minus some set = of singular points. More precisely
B = &) + RMBM), A € A 4.2)
Let = be the set of all A €A for which I —K()) is singular.
= = {A e All € (RN}, 4.3)
where o(K())) denotes the spectrum of the operator K(\). The condition 1 € o(K (7)) is the usual precursor of a

characteristic equation (Heijmans (to appear), Hoppersteadt (1975)).
For A € A\ Z we have

BQ) = I —KRMN)~'dM). 4.4)

In section 8 we shall prove that the element A; of 2 with largest real part determines the large time behaviour of
the solution B(z). Often A; turns out to be real, and the corresponding eigenvector of RQ\,) to be positive. (See
chapter II of Metz & Diekmann (in prep.).) The theory of positive operators is an important instrument to prove
existence of A;, and has been succesfully exploited in a number of problems from population dynamics (Diekmann
et al. (1984), Heijmans (to appear), Heijmans (1984), Metz & Diekmann (in prep.)). As an intermezzo we shall now
present some results from positive operator theory with the emphasis on the existence and uniqueness of positive
eigenvectors and eigenfunctionals.

5. Positive Operators
For the basic theory of order structures in a Banach space and positive operators, we refer to Schaefer (1974).

In the sequel E is some Banach space and E” is it’s dual, i.e. the space of all linear functionals (or linear forms)
on E. We denote the duality pairing of € E, F € E* with <F;>. A subset E, C E is called a cone if the fol-
lowing conditions are satisfied ‘

@) E . is closed,

(ii) a¢+ﬂ1[/EE+ if¢,\pEE+ anda,B?O
(iii) ¢ e E,and —¢ € E implies thaty = 0.
The reader can easjly verify that by virtue of "¢ < ¢ iff y—¢ € E " each cone E . CE defines an order relation on
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E by which E becomes an ordered Banach space. We say that ¢ < ¢ if ¢ < ¢ and ¢4). The cone E , is called
total if the set {Y—o|y,p € E .} is dense in E. The dual set E} is by definition the subset of E* consisting of all
positive functionals on E,ie. F € E} if and only if F €E” and <Fy> = O0forally € E.. If E is total then
E’ is a cone as well. A positive functional F is said to be strictly positive if <F > > 0 fbr aly € F,y=£0. A
bounded linear operator T: E — E is called positive (with respect to the cone E ) if Ty € E, for all ¢ € E .
Notation T = 0. We denote the spectral radius of T by r(T').

The first authors who systematically studied positive operators and their spectral properties were Krein and Rut-
man (1962). In that paper (which is a translation of a Russian paper which appeared already in 1948) they general-
ized the Frobenius theorem (which states that the spectral radius of a non-negative matrix is an eigenvalue of that
matrix). They proved, among others, the following result.

Theorem 5.1 (Krein & Rutman (1962)). Let T: E — E be compact and positive with respect to the total cone E . CE,
and let r = r(T) > 0. Then there exists a y € E ,, Y=£=0 such that Ty = ri.

They also introduced the notion of strong positivity. A positive operator T: E — E is called strongly positive if

for all ¢ € E ., y=%40 there is a natural number p such that 77y € E+, where E + denotes the interior of the cone
E , (assuming that E ., has interior points). They proved that, if the assumptions of theorem 5.1 are fulfilled and,
moreover, T is strongly positive, then

@ T has (except for a constant) one and only one eigenvector € E . Moreover ¢ € E, and Ty = ry.
(b) T” has one and only one eigenvector F € E}, F is strictly positive and T°F = rF.
© All other eigenvalues A of T satisfy |A| < r(T).

Many years later their study was continued by a great number of authors, extending the ideas of Krein and Rutman
in several directions. Among others they weakend the condition that T has to be compact. (In many cases it is suffi-
cient that A = r(T) is a pole of the resolvent R(\,T) = (\] —T)~'.) Furthermore several different concepts gen-
eralizing the concept of strong positivity have been introduced. We mention three of these generalizations. Schaefer
(1974) introduced in the early sixties the concept of irreducible positive operators. Krasnoselskii (1964) studied u,-
positive operators, and finally Sawashima (1964) developed the theory of non-supporting operators. (Sawashima uses
the terminology “non-support”.) All three concepts have the advantage that the interior of the cone E may be
empty. It seems to us that Sawashima’s definition is the most natural for our purposes. If £ is a Banach lattice then
there is a close relation between the concepts of Sawashima and Schaefer.

" Definition (Sawashima (1964)). A bounded, positive operator T: E — E is called non-supporting with respect to
E,ifforall ye E,, Y540, and F € F}, F 0, there exists an integer p such that for all » = p we have
<F,T"y> > 0.

The following result, which was proved by Sawashima (1964) is needed in the next section. The result can also be
found in paper by Marek (1970) which provides a comprehensive overview of some of the developments in positive
operator theory between 1950 and 1970.

Theorem 5.2. Let the cone E, be total, let T: E — E be non-supporting with respect to E ., and suppose that
r = r(T) is a pole of the resolvent, then

F's




11

(a) r > 0 and r is an algebraically simple eigenvalue of T.
(b) The corresponding eigenvector  satisfies: ¢ € E  and <H > >0 forall H € E, H # 0.
© The corresponding dual eigenvector is strictly positive.

—
(d) . All remaining elements A € o(T) satisfy |A| < r.

6. Location of the singular points

From now on we let X = L[0,00). In section 4 we defined the analytic operator family LNRNE A, being the
Laplace transform of K(¢). Evidently K () defines a bounded operator on X for all A € A,

G(2x)
KM = [ e ™Mk(@2x)WX(~a2x)da, ¢ € X. ©6.1)

[

In the Appendix we shall prove the following result.

Lemma 6.1. For all X € A the operator K()) is compact.
We can now apply the following result, proved by Steinberg (1968).

Lemma 6.2. Let E be a Banach space and A a subset of the complex plane which is open and connected. If T(N) is an
analytic family of compact operators on E for A € A, then either (I —T(N)) is nowhere invertible in A or (I —T(\))™! is
meromorphic in A.

(A function ¢(A) defined on a set ¥ C C is called meromorphic if it is analytic on ¥ except for an at most
countable set of elements of ¥ which are poles of finite order of ¢.) It is clear that [KA)|l — 0 if Re A — co, imply-
ing that 7 — K ()) is invertible if Re A is large enough. Thus lemma 6.1 and lemma 6.2 yield:

Theorem 6.3. The function A — (I —K(\))™ ! is meromorphic in A.
Therefore the set 2 defined by (4.3) is a discrete set whose elements are poles of (I —EK®))™! of finite order.

Now we shall-employ positivity arguments to determine the so-called dominant singular point, i.e. the element of
2 with the largest real part. Before doing so we make an additional assumption on the growthrate g.

Assumption 6.4. There exists a § > 0 such that 2g(x)—g(2x) = §, all x € [0,00).

. In Diekmann et al. (1984) (see also chapter two of the forthcoming book Metz & Diekmann (in prep.)) a similar
assumption has been made to establish compactness of the semigroup. In section 9 we shall explain why assumption
6.4 is imposed. A consequence of this assumption is that a baby call cell can not attain arbitrarily small sizes. We
shall make this more explicit. If a cell is born with size x, than it can divide not earlier than a, time units later, and
its daughers can not be smaller than

def 1 1~
Y(x) = 3X(agx) = 3G~ @g+G(x)). (6.2)

A straightforward calculation shows that y has precisely one fixed point x, if assumption 6.1 is satisfied. The follow-
ing result shows that x is a globally stable fixed point of the mapping v.
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Lemma 6.5. Let for arbitrary x| = 0 the sequence {x, } be defined recursively as x, 11 = y¥(x,), n = 1 then: x; < x,

implies xg < xp,,n 2 1, and x| > xq implies x, > xo, n = 1. Moreover nh'nolo X, = Xg
-

—
Proof. Since y(0) > 0, y is continuous and x, is the unique solution of y(x) > x if 0 < x < x,. From assumption

g(2x)
2g(xg)

x, < xo if xy < xo and x, > xg if x; > x¢. Moreover lim x, exists and is a fixed point of y. This yields the
n—o0
result. O

6.4 we conclude that y'(xg) = < 1, and this yields that y(x) < x if x > x,. Since y is increasing we have

From this lemma and the observation that a baby cell attains the minimum birth size if all its ancestors have divided
at age ay, it follows that this minimum birth size is x¢ (which is positive if aq is positive), provided that there are
infinitely many ancestors who all lived under the same growth regime.

Remark 6.6. The state space £, indicated in section 1 is given by &, = {(a,x) € RT X R*|x = X(a,x()}.

However, we do not want to restrict ourselves a priori to initial data defined on ; only, but admit that ngya,x)
defined in (1.6) is positive on £\ ;. We can prove the following result.

Lemma 6.7. If{ is an eigenvector of R\, then y(x) = 0, x < Xg

Proof. Let y € X. It follows from (6.1) that (KQ)"¢)(x) = 0 if x < x,, where x; = y(0) and x,+; = ¥(x,),
n = 1. If ¢ is an eigenvector of K(\) then y is an eigenvector of K(A)" for every positive integer n. As a conse-
quence Y(x) = 0 if x < x,, and now the result follows from lemma 6.5. O

We denote with Y the subspace of X containing all ¢ € L;[0,00) which are identically zero on [0,x). Obviously
KMNY C Y. We let Ko(A) be the restriction of K (M) to Y. It is clear immediately that lemma 6.1 and theorem 6.3
remain valid if KQ\) is replaced by Ko(M). Moreover (4.3) can be replaced by 2 = {A € A|l € 0(1300\))}. Let Y,
be the subset of Y containing all elements which are non-negative a.e. (almost everywhere). The following result is
straightforward. '

Theorem 6.8. Y. defines a cone in Y which is total. Moreover K()) is positive with respect to Y .. Jorall A € ANR.

We let Y} be the dual of Y, and this defines a cone in Y* because Y, is total. Clearly Y} can be identified
with L} [x¢,00), i.e. all measurable function on [xq,00) which are non-negative and essentially bounded.

The following lemma provides a useful characterization of the non-zero elements of Y .

Lemma 6.9. If F € Y}, F 5 0, then there exists an € > 0 such that for all f € Y, satisfying f(x) > 0 for almost
every x € [xg+e,00) the relation <F.f > > O holds.

Proof. F € Y}, F % 0 implies that there exists a measurable set ¥V C [xo,00) with measure p > 0 such that
F(x) >0, x € V. If we choose € < p, then the intersection ¥ N [xq+¢,00) has a measure which is greater than
p—e > 0, and this yields the result. [J

Now we can prove the following strong positivity result with respect to K(A).

&




13

Theorem 6.10. For all A € ANR the operator K(\) is non-supporting with respéct to Y ..

Proof. Lety € Y.,y % 0 and A € ANR. If we substitute z = X(—a,2x) in (6.1) we obtain
—
X(—au2x)

RoW)x) = [ e MOBI"6ED . k(G (2x)~G(2)2x) {gl%))— b

Xo

Let F € Y}, F 0 and let € > 0 be given by lemma 6.9. There exists a x; > x¢ such that j:(_a"’zx’ ;[z(z)dz > 0.

This yields that (RoMW)(x) > 0 if x = x;. Let x, = y(x), where v is defined by (6.2). Then (Ko(A)Yy(x) >,
x = x,. Recursively we find Ko d)(x) > 0, x = x,, where x, = y(x,-1), n = 2. We conclude from lemma 6.5
that there exists a p € N such that x, < xo + ¢ if n = p. Now we can apply lemma 6.9 which says that
<F,Ry\)'y > 0if n = p, and this proves the result. [

We can draw the following conclusions from theorem 5.2.

Let r, = r(Ro\), A € A. If A € ANR, then
(a) ry is an algebraically simple eigenvalue of KoM
(b) The corresponding eigenvector yy, € Y, satisfies Ya(x) > 0, x € [xq,00) a.e. (We fix {, by the normaliza-

tion llpll = 1.)
(©) The corresponding eigenfunctional F) € Y} satisfies Fj(x) > 0, x € [x(,,0) a.e. (i.e. F) is strictly posi-
tive).

Hence, if A € Aisreal and ry, = 1, then A € 2.
Lemma 6.11. There exists a unique A € ANR such that r(KsA) = 1.

Proof. LetApe ANR,A>pandy € 7,.

A 6@x)
Kopix) = [ e Mk(a,2x)W(X(—a,2x))da

G(2x)
> AP [ e Mp (g 20X (—a,2x))da = e®TPURNY)x).

| If we substitute = i, then we obtain Ko(in = e® W0 Taking duality pairings with F, on both sides yields
r, = e W b ' (63)

where we have used that <F,y3>0. Thus A - r(Ko(N) is strictly decreasing in ANR. Moreover this function is
continuous. It follows easily that Ahm r(K,MN) = 0. If we can prove that Mlir% r(Ko(\)) = oo then the conclusion of
—>00 —Qw '

the lemma follows. We have to distinguish between two cases.
(8)  dg = co. Then (6.3) implies that _lim r(Ko\) = oo.
—>—00

(b  dy < . Since Il = 1,
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-]

r(Ko®) = IRl = [ { [ e MEEx)dttdx = [ e ™ [ (K@Wa)x)dx Jdt
0 0 Xo

Xo

0 ] 0 m .
= [e™IK(tallde = [ e ™IK@Walldt = [ mge e ™™Mdt = o O
0 To T, A+d°°

where we have used lemma 3.1. The change of order of integration was permitted because of Fubini’s theorem
(Dunford & Schwartz (1958)). It follows that M]J'E% r(Ky\) = 0. O

We denote the unique solution of r(KO(A)) = 1 by A4, and we shall write §; and F; in stead of ¢, and F,,
respectively. We assume that {; and F; are normalized by

Wl = 1, <Faay> = 1. 6.4

In order to prove that indeed A, is indeed the element of 2 with the largest real part, we need the following lemma.

Lemma 6.12. Let f € L,[0,00) be a complex-valued function. Then |[¢° f(x)dx| = [§°|f (x)|dx if and only if there
exists a constant a € C, |a| = 1 such that |f (x)| = af (x) a.e. on [0,00).

This result has been proved in Heijmans (to appear).

Theorem 6.13. IfA € 2, A £ )\, then Re X < A,.

Proof. Suppose A € = and KA} = . Hence |Ro(AW| = |[¢|, where [¢|(x) 4 [$(x)|. This yields KoAg)[¥| = |¢,
where Ay = Re A. Taking duality pairings with F,, on both sides yields r), <F),.[¢|> = <F),,|¢|>, from which
we conclude that r,, = 1. In the proof of lemma 6.11 we have shown that A—r, is decreasing in A € ANR, and
this implies that A, = Re A;. Now suppose that Re A = A; and Im A = 7. Thus I%o(}\d)hp[ = |J|. Suppose that
Ry > |¢|. Taking duality pairings with F; on both sides yields <F,,|¢|> > <F,,j¢|> which is a contradic-
tion. As a consequence I?O(}\d)wzl = ||, from which we deduce that |{| = ¢y, for some constant ¢ which we may
assume to be one. Therefore Y(x) = Y (x)e’*™) for some real-valued function a. If we substitute this in
KoQaWa = |Ko\| we obtain

Jiz e T k(@2 Wa (X (—a .20 ))da = |[37 €7 T k(@ 26 Wa(X (= a,2x))e’ “H Vi,

From lemma 6.12 we conclude that «(X(—a,2x))—ma = B, for some constant B. If we substitute this in
_ RoAW = ¢ we obtain e'f[g e M k(a2x))da = Py(x)e’*™), thus a(x) = B from which we conclude that
n=ImA =0 0

This result, combined with the Riemann-Lebesgue lemma (lemma 4.3) and theorem 6.3, implies among others that
there exists a positive horizontal distance between A; and the other points in =.

Corollary 6.14. There exists an € > 0 such that \;—e > —d,, and Re A < Ay —cif A € 2, A £ A,

Clearly Ko(A) and K()) have the same eigenvectors (lemma 6.7). However Ko(A)* and K(A)* do not have the same
eigenvectors. Let F; be the eigenvector of K(A;)" corresponding to the eigenvalue one. Obviously, F; defines a posi-
tive functional on X. We can prove the following relation between F,; and F,. Let <F ;> = 1.
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Theorem 6.15. For all { € Y, the equality <F; 4> = <F; > holds.

R def .
Proof. Lety € Y, then ¢ = <F 4> -y, + p, where p € KK A;)—1I) = Z, ie. the range of Ky(A;)—1I. Since

the spectral radius of the restriction of KyA;) to the subspace Z is strictly less than one (theorém 5.2d) it follows
that |Ko(A\,)" pll < @ llpll for all p € Z, where 8 is some constant strictly less than one. Since K\, W = KoA )W we
have <Fg > = <KM\)"Fy> = <F RNV (SF 4>¥; + p)> = <F > + <Fp.ReA\)p>. If we let
n — oo then the second term at the right-hand-side tends to zero yielding that <F > = <F,¢>. O

7. Computation of the residue in A,.

Here we shall concentrate on the behaviour of (/ —K(A\)) "' in a neighbourhood of A = A;, which is a pole of fin-
ite order (cf. theorem 6.3). The techniques exploited in this section are very similar to those in a paper by Schum-
itzky & Wenska (1975). We define

RO =I—-KMN)™, Ae A\ = . (7.1)
Since K () is analytic in a neighbourhood of A; we can write down its Taylor expansion.
n 0
K} = 2 A~A)'K,, (7.2)
n=0

where the series converges in the norm topology. Let p = 1 be the order of the pole of R(A) in A = A;. In a neigh-
bourhood of A;, R(A) can be represented by a Laurent series:

RO = 3 A-A)R,, - 3)
n=-p
where by definition R, 5 0. From
RMNUI—KQ) = I—KRQM)RA) = I (74)
if follows immediately that
R_,(I—-Kg¢) = (I—KQR_, = 0. (1.5

From this relation and K, = K()\;) we obtain

MR_,) = {Ya}) (7.6)

- where (R _,) denotes the range of the operator R _,, and {y,} stands for the span of the positive eigenvector y;,
ie. {$4} = {v dulr € C}. A relation similar to (7.4) is valid for the dual operators K{ = K(\;)* and RZ,.
Therefore

ARZ,) = {Fs}. .7

From (7.4) we also deduce that
—R_,K; +R_, ., (I—-Kp) =0, ifp >1, (7.8a)
—R_ K, + RI—Kp) =1, ifp = 1L (7.8b)

Together with (7.5) this implies

&
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R,KR_, =0, ifp>1, - (1.92)
R—IKIR'—I = _R_l, lfp =1 (7.9b)

We can state our main result now. —

Theorem 7.1. R(A) has a pole of order one in X = A; and the residue R _, is given by

Row=—Ta¥> ek (1.10)
_ T e o . e A. .
l <Fp,—Kpy> ' °

Observe that —K; = [—7‘1}: K(\)h=), defines a positive non-supporting operator on Y and thus it follows from
theorem 6.15 that <F;,—Kp;> = <F;,—Kp;> > 0.

Proof of theorem 7.1. Let ¢, and H, be solutions of R_,¢ = ¥, and R.,H = F; respectively. On account of
(7.6) and (7.7) such solutions indeed exist. If p > 1 then (7.92) yields 0 = <H,;, R_,K\R_,¢;> = <Fy,Kp;>
which is a contradiction since F, is strictly positive and —Ky; is positive and nonzero. Therefore p = 1, and
RR_-1) = {¢q}. Now let R_y=f(@) y; for some linear functional f. Then <H,;R_> =
<RLHu > = <F > = <H;,—R_\KR_y> = <R L H;, —K(f()) $a)> = fW) <Fy,—Ky>,
thus f () = <F;y> / <F;,—Ky,;> which proves the result. [] '

It is not & priori clear whether or not <F;4> > 0if y € X, ¢ 5~ 0. This, however, is proved in the following
lemma.

Lemma 7.2. Ify € X, ¥ 5= 0 then <Fy > 0.

Proof. If the restriction of ¥ to [xg,00) is not identically zero, then the result follows from theorem 6.15. Now sup-
pose that ¢ is positive on a subset of [0,xo] with positive measure. Thus

G(2x)
KO = [ e k(@2x)0UX(—a,2x))da
G(2x)—G(x0)

= [ e7MOBIGED . k(G(2x)—G(z),2x) -ﬁ% dz >0
0

_ for all x = x,. Therefore <F > = <R\, Fj> = <F; KA\ W> > 0. O

8. The inverse Laplace transform

Let E be a Banach space. The Hardy-Lebesgue class H,(a;E) is the class of functions g(A) with values in E,
which are analytic in Re A > « and satisfy the following conditions (cf. Friedman & Shinbrot (1967), Hille & Phil-
lips (1957)). :

1

s {o lg@+imlPdn} < oo, (8.12)
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glatin) = lgg g +in) exists a.e. and is an element of L,(— 00,00;E). (8.1b)
The following inverse Laplace transform formula can be found in Friedman & Shinbrot (1967).
—
Lemma 8.1. Ler g(A) € Hy(a;E), then the function
_ 1T
SO =55 [ 's®dd =) (82)
is defined and independent of v, for allt € (—o0,00)" f(t) = 0, ¢ <0, f(2) is continuous and F) =g®.
We rewrite the abstract renewal equation (2.17) as
B = @ + K+*B, (8.3)
where K *B denotes the convolution product, i.e. (K*B)(t) = [§ K(a)B(t —a)da. If we substitute
B =0®+y, 8.9
we obtain
v = ¥ + K=, 8.5)
where
¥ = K+d. (8.6)
Taking Laplace transforms on both sides of (8.5) gives us
N = I —KRN) Q). 8.7

We can prove the following result.
Lemma 8.2. #(A) € H(;X), if a > Ay,

Proof. Let A € C be such that Re A = a. It follows from lemma 3.1 and lemma 4.4 that the functions 7 — ®(¢+in)
and 7 — K(¢+in) are element of L,(— 00,00;X) and L(— 00,00;%B(X)) respectively, if { > —d,, where B(X) is the
space of bounded linear operators on X. Therefore the function n — \i’({ +in) is an element of L;(— 00,00;X) if
¢ > —d,,. Moreover we know from the Riemann-Lebesgue lemma (lemma 4.3) that ||( —K@E+in) W < 2if |n] is
* large enough, say |y| = no. From the continuity of the function 7 — (I —K(+in))™! on [—ngmo] Gf § = ) we
conclude that there exists a constant C > 0 such that (I —K@¢+in))”!ll < C for all n € (—o0,00). Thus
3¢ +inll < CII¥E+in)ll where we have used (8.7). The positivity of K(r) and ¥(z) yields that

I¢+inlh < I¥@+inl, ¢ = q

and we conclude that condition (8.1a) is satisfied. The validity of condition (8.1b) follows from the analyticity of
(I —KQA)~", Q) and R (M) on the region Re A > A, and the fact thata > A;. O
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Now let @ > A, then lemma 8.1 yields that
1 atiw
= e Aty
) 5 a~£ 3} eMHA)dA (8.8)

is well-defined. Some contributions to this integral can be evaluated by the method of residues. Therefore we shift
the vertical integration curve Re A = a to the left across the singularity A = A;, such that it crosses no other ele-
ments of 2 (see fig. 2). Let ¢ > 0 be given by corollary 6.14, and let 0 < » < e. Let I' be the rectangular contour
in fig. 2. It follows immediately from the Riemann-Lebesgue lemma (lemma 4.3) that

lim [eMPA)dA =0, i = 24.

T T
Now it follows from Cauchy’s theorem (which is also valid for vector-valued functions: see Hille & Phillips (1957))
that
1 At 1 A —v+iT
[ - 2 _ I At
MORE w 95 NN + - — lim . f_ i eMP(N)dA,

where we have used that the first integral does not depend on T'. The residue theorem gives:
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0 B S VN — Maan — MR &
o ?e AN = Res{eMpN)} = e R_r¥ ()

L o <Fi,RA)®0N)>
= MR_RAHON,) = M - - Yy -
<F;,—Kp;>
_ <F;,—Ki90\)>
<F;,,—Ky;> @

where we have used theorem 7.1, (8.6) and (8.7). As in the proof of lemma 8.2 we have that the function
1 — #A; —v+in) is an element of L (— 00,00;X). Now

1 A—vtioo
== [ M)Al < Mee™ T,
2m 5,5 ioo

where

def b

M= 5= [ 13 —v-+inldn depends on » and ©.

Remark 8.3. It follows from the boundedness of (I —K(\))~! on the vertical line Re A = A; —», the Schwarz ine-
quality and Parseval’s relation (section 3) that

® 1l 1
M < M- { [ e MNP} - { [ 72N @G0)]Rdr ),
0 0
where M, only depends on ».
We can state our main result now.

Corollary 8.4. Let ¢ > O be given by corollary 6.12, and let 0 < v < ¢, then le ™™ B@)—cyyll < Le ™, t =0, for

o <Fpd0a)> o
some constant L, where c = ———————— is a constant depending linearly on ®.
<F;,— K>

Proof. We have B(t) = ®(t) + »(t), and »(t) = M (cyg+0(e™)). Now the result follows from lemma 3.1. [

.~ Remark 8.5. Observe from corollary 8.4 that if 1 has become infinite, no cells with size less than x, are born,
although such cells may be present at time zero.

9. Interpretation, conclusions and final remarks

For the sake of converience we repeat (2.11) and (2.12)

n(t,ax) = ﬂ%‘%}l Q(t.a—1.X(—tx)nga—t.X(—tx), 1 <a,

n(tax) = KQ%%’QZ E@X(—ax)B(t—a,X(—ax)),t > a

This does not define a classical solution of (1.4)-(1.6). However it can be proved that n is differentiable along the

&
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characteristics of the partial differential operator D = 0 + ?aa— + g(x )—i)@;,'and in this sense indeed is a solution

o
of (1.4)-(1.6). .
Let —
na,x) =e M. %"Tﬁm E(a,X(—a,x)Wa(X(—ax)). ©.1)

Now we can restrate corollary 8.4 in terms of the solution n of (1.5)-(1.6).

Corollary 9.1. Let € > 0 be given by corollary 6.14 and let 0 < v < ¢ then the solution n(t,a x) of (1.4)-(1.6) satisfies
lle ™ n(t, " )—h(neyndl < L’e *lingll, t = 0, where ||| stands for the L(Q)-norm, L’ is a positive constant, and h
is a strictly positive linear functional on L ().

<F;,®(0\,)>
<Fg,—Ky>"
Corollary 9.1 is a typical renewal result. The population grows (or decays) exponentially with exponent A; (which

is sometimes called the Malthusian parameter). As time increases an asymptotically stable age-size distribution is
reached. If 1+ = oo the dependence on the initial condition is only reflected by the scalar (A ).

Remark 9.2. & can be computed from h(ng) =

If in our model the rates b and p depend on age only then we can integrate (1.4)-(1.6) over all sizes x and we
find the age-dependent problem

aN dN

T —(a)+b(@)N(t,a), (9.22)
N(@,0) = 2fb(a)N(z ,a)da, (9.2b)

0 .
N(0,a) = Na), ‘ (9.2¢)

PR
where N(t,a) = [¢° n(t,a,x)dx. If the assumptions (4;), (4,) and (4,) of section 1 are satisfied then a stable age-
distribution is reached as ¢ — co:

N(t,a) ~ e Nya), t — oo,
~ (this. result can also be found in Eisen (1979)) and the growthrate g(x) has no effect on this stable age-distribution.
More details can be found in Hannsgen et al. (1984).

Now we shall explain what can happen if assumption 6.4 is not fulfilled.

I We expect that most of our result remain valid if g(2x) < 2g(x), all x (but not necessarily
2g(x)—g(2x) > &, for some § > 0). But probably one gets mixed up with great technical difficulties, which,
however, do not provide additional insight.

IL. If g(2x) > 2g(x), for all x, then some sort of instability comes into the problem. Although y defined by
(6.3) again has a unique fixed point x,, in this case it is unstable:

dy, _ 8@ _
e e
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For the sequence {x, } of lemma 6.4 this result in

x, — 0, if x; < xy,
X, — o0, if x; > x;. —

If we start with a population all of whose members have size > x(0), where X(0) > x,, then at time ¢ all
individuals have size > X(z), where X(¢) — oo. As a consequence there cannot exist a stable age-size distri-
bution. A second problem arising in this case is caused by the fact that growth becomes very small if x
tends to zero. As a consequence individuals can not grow away from zero.

Suppose that g(2x) = 2g(x), all x. (Notice that this and also former case is actually excluded by the
boundedness condition on g: however the same integral equation for the birth function B(r) still holds.)
Biologically this condition means that the time 7' needed to grow from x to 2x does not depend on x. We
can prove that in this case the set of singular points = is periodic, ie. there exists a p > 0 such that
AeZ=Atikp € 3,k € Z.

Lemma 93. Let g(2x) = 2g(x), for all x and let T = G(2x)—G(x) (which does not depend on x ), then 2 is

periodic with periodp = %,ﬂ—

Proof. Suppose A € 2 and let § € X be determined by K(AW =

Yx) = _;?e"‘“k(a,Zx)\[z(X(—a,Zx))da.

ao

Let T = G2x)—G(x) andp = 27” Let Y4 (x) = e *%) . y(x), then

RN +ikp Wi )(x) = 7e—Me_ik””k(a,Zx)xp(X(~a,2x))e_i"P(G(2")”“)da

(]

o0
= ¢~ W0 [ ¢k (a2 W(X(—a,2x))da =

= ¢ RPTHGONY(x) = y, (x), hence A + ikp € 2. O

Now let ¢y (x) = e ~#5)y,(x), where y, is the positive eigenvector of K(A;) (assumed that a solution A
of r(K(\)) = 1 exists). Let

bax) = e EECLI) E@ X(—am)rh(X(—a), K €2,
where A, = A; + ikp (see (9.1)). Choose v, € C, k € Z such that 2, lre] < 1, Y-k = Y, and define
the initial age-size-distribution ny(a,x) by

def «
no(a,x) = n(())(a’x) + 2 Ykng(a’x)’

k=—o
k0

o0
= (1+2Re 3 yee ®®ynf(a.x),
k=1

A
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then ng(a,x) = 0, (a,x) € £ and the solution B(¢,x) of the associated integral equation (2.14) is given by

B(tx) = eMy(xy{1+2Re 3} v, 00N} = Moy (xyh(2,x).
k=1 —

where
def © )
h(tx) =1+ 2Re Y y, ¢ -66)
k=1

satisfies
h(@t+T,x) = h(x),
h(t,2x) = h(t,x).

This proves that there does not exist a stable age-size-distribution in this case.

This result disproves a remark of Bell (1968) which says that in case of exponential growth (g(x)=c-x) there
can exist a stable age-size-distribution if b depends in an appropriate manner on x and a. Trucco & Bell

(1970) showed that in the case of dispersionless growth (i.e. % X(a,x) depends on a only: this is satisfied if

g(x) = c'x) it is not possible that the first and second moments of the distribution of birth sizes both
approach finite non-zero limits as ¢ — co, yielding that there does not exist a stable age-size distribution (see
also Trucco (1970)). Hannsgen, Tyson & Watson (1984) proved that in case of exponential growth and under
the assumption that the generation time (= age at which a cell divides) is a random variable with a given
probability density function there cannot exist a stable, time-independent size distribution for the birth func-
tion.

1v. If [0,00) =1, U I, U I3 such that g(2x) < 2g(x), x € I, g(2x) = 2g(x), x € I, g(2x) > 2g(x),
x € I, then the question of existence of a stable distribution is a very hard one, but also a very interesting
and exciting one from the mathematical point of view.

The reason for making assumption (4,) is a technical one. It guarantees the existence of a dominant element A,
of 2 (see lemma 6.11).

Undoubtedly our theory is also valid if a less restrictive condition than (4, ) is imposed. However, our main pur-
pose is not generality but to give an idea how abstract results from functional analysis can be used in the study of
concrete structured population models. The results that we obtained here can also be found using semigroup
methods, and readers who are trying to do so, will find out that the two approaches are more closely linked then it
seems at first sight.

Appendix

Here we shall prove that for all A€ A the operator K(A) is compact. We need the following result of Krasnoselskii
et al. (1976, chapter 2, § 5. 6). They proved that a linear integral operator which has a compact majorant is compact
itself. We shall make this more precise. Let 2CR be a measurable set and let the linear integral operator
T:L(§)—L(£) be given by

(Te)x) = [h(x.p)d(y)dy.
Q
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Suppose that

lh(x p)I<h¥(xy), xy €,

and let the operator T be given by
(THe)x) = [h™(x)6()dy.
Q
Then the following result holds (Krasnoselskii et al. (1976)):

Lemma 1. If T™ is a bounded, compact operator from L (Q) into itself then T is also compact.

Now let Asf), then

X(—aelx)
RO = [ MBI IR(G@x)=G@)2x) L de
0

With (2.16), (4,) and lemma 3.1 this yields
le —ME@)—GE) k(G(2x)— G(2),2x )_1_.__ |<e ~(Re A+dXG20)-GEN._4__ b 1le™.
g() 8 min
Let p =ReA+d,, then p >0, since A € A. Let the operator K *(p) be defined as

X(—ao,2x)

K eW)x) = [ e PO G)dz

0
If we can prove that K*(p) is compact for all p >0 then it follows from Lemma 1 that R(\) is compact for all A A.

Then following compactness criterium can be found in Kufner et al. (1977).

Lemma 2. The bounded linear operator T:L()—L () is compact if for every €>0 there exists a 8=>0 such that
Jal(To)(x +h)—(Fd)x)|dx <ellgll for all peL(K) and |h|<b.

We shall use this criterium to prove that K*(p) is compact for all p >0. For simplicity we assume that g(x)=1,
for all x. The reader will have no difficulty to see that the proof can be carried through for more general g. Let
YeL[0,00) and let 2 >0. Then

(K @W)x +h)—(K T @W)x)| =

Ax+h)—ao 2x —ao
le =& th) f ePY(z)dz —e %% f e Y(z)dz| x
0 0
2x —ao 2(x +h)—ao def
< |eTHEI x| [ ePlY(z)|dz +e PEFD [ eF@ldz=1 1)+ o),
0 2x —ao

whete f1(x) = (1—e~ P @CE), falr)mePE RN 002 o az and [g)Gx) = ()| Thus

2x+h)—ao

Ifall = ffz(x)dx = 7e“2P<x+">-{ [ eFliz)ldz Yax
0

Yaao 2x —ao
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2(z+ao) ) 2ok
= f PO [ P dxjdx = S5 L
%p
-(z+ao) h

. o
From these two estimates and Lemma 2, the compactness of K *(p) and thus K (A) follows immediately.

Acknowledgment. 1 am grateful to Horst Thieme for some valuable suggestions.
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